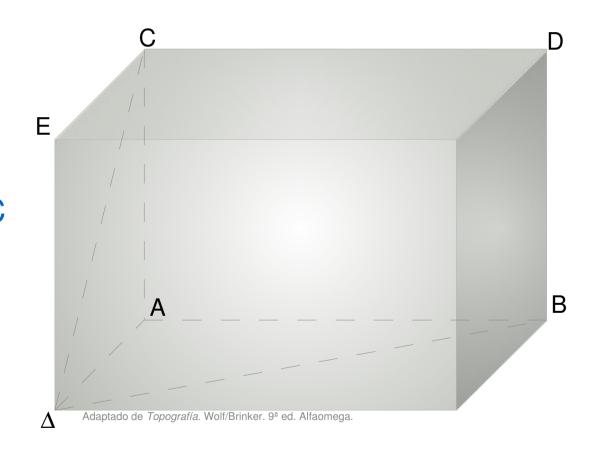
Topografía

Capítulo 2: Mediciones y Errores


- → Tipos de mediciones
- → Unidades de medida
- → Precisión y exactitud
- → Errores
- → Valor más probable (Día 2)

Tipos de mediciones en Topografía

En topografía plana se utilizan cinco clases de mediciones:

- *Ángulos horizontales = $\angle A\Delta B$
- *Distancias horizontales = ΔA ó ΔB
- *Ángulos verticales = $\angle E\Delta C$ ó $\angle A\Delta C$
- *Distancias verticales = AC ó BD
- *Distancias inclinadas = ΔC

Combinándolas se pueden determinar posiciones relativas entre puntos.

Unidades de medida

Unidad de medida: Magnitud particular, definida y adoptada por convención, con la cual se comparan las otras magnitudes de la misma naturaleza para expresar cuantitativamente su relación con esta magnitud.

Unidades de medida

Las magnitudes de las mediciones son relativas a **longitud** (L), **área** (L²), **volumen** (L³) y **ángulo**. Y se efectúan usualmente en dos sistemas:

- * Sistema Inglés (usado en los países rojos en el mapa)
- * Sistema Internacional de Unidades (usado en el resto de países y en la Luna)

Ing. Édgar Jiménez · Universidad de Ibagué

Sistema Inglés

Unidades para medidas de longitud:

* Pie, pulgada, yarda, cadena de Gunter.


```
1 pie ≡ 12 pulgadas
```

1 yarda
$$\equiv$$
 3 pies

1 pulgada
$$\equiv$$
 2.54 cm

1 cadena de Gunter ≡ 66 pies ≡ 100 eslabones

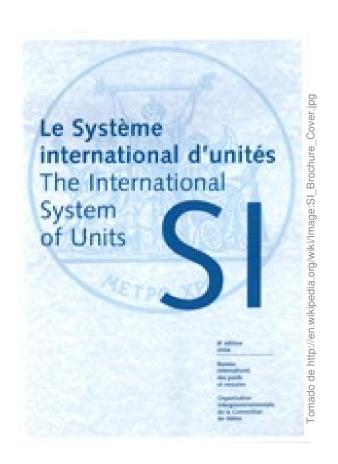
Sistema Inglés

Unidades para medidas de área:

* Pie cuadrado, yarda cuadrada, acre.

1 acre \equiv 10 cadenas de Gunter cuadradas 1 acre \equiv 10*(66 pie)² = 43 560 pie²

Unidades para volumen:


* Pie cúbico, yarda cúbica, acre-pie.

Unidades para ángulos: Las mismas que en el SI.

En 1960 la Conferencia General de Pesas y Medidas elaboró un sistema de unidades que estuviera basado en fenómenos físicos fundamentales, facilitando el entendimiento y la estandarización de las medidas. La única excepción es la unidad de masa, el kilogramo, que sigue estando referida a una "masa prototipo" de un cilindro de platino e iridio conservado en la Oficina Internal. De Pesas y Medidas.

Ing. Édgar Jiménez · Universidad de Ibagué

En Colombia el Decreto 1731 de 1967 hizo obligatorio y oficial el SI; y la NTC 1000 del ICONTEC recoge la nomenclatura, definiciones, símbolos y recomendaciones para su uso.

Unidades fundamentales:

MAGNITUD	UNIDAD	SÍMBOLO	
Longitud	metro	m	
Masa	kilogramo	kg	
Tiempo	segundo	S	
Intensidad de corriente eléctrica	ampere	Α	
Temperatura termodinámica	kelvin	K	
Intensidad luminosa	candela	cd	
Cantidad de sustancia	mol	mol	

Unidades derivadas (ejemplos):

MAGNITUD	UNIDAD	SÍMBOLO
Superficie	metro cuadrado	m ²
Volumen	metro cúbico	m ³

Ing. Édgar Jiménez · Universidad de Ibagué

Unidades suplementarias:

MAGNITUD	UNIDAD	SÍMBOLO		
Ángulo plano	radián	rad		
Angulo sólido	Esteradián	sr		

Unidades aceptadas que no pertenecen al SI:

MAGNITUD	NOMBRE	SÍMBOLO	VALOR EN UNIDADES SI			
Masa	tonelada	t	1 t = 1000 kg			
Tiempo	minuto	min	1 min = 60 s			
	hora	h	1h = 60 min = 3.600 s			
	día	d	1d = 24h = 86.400 s			
Temperatura	grado Celsius	°C	${}^{\circ}C = K - 273.15$ $K = {}^{\circ}C + 273.15$			
	grado	٥	1° = (1 / 180) rad			
Ángulo plano	minuto	,	1'= (1 / 60)° = (1 / 10 800) rad			
	segundo	"	1" = (1 / 60)'= (1 / 648 000) rad			
Volumen	litro	L	$1 L = 1 dm^3 = 1000 cm^3$			

Ing. Édgar Jiménez · Universidad de Ibagué

Prefijos:

Nombre	yotta	zetta	exa	peta	tera	giga	mega	kilo	hecto	deca
Símbolo	Υ	Z	Ε	Р	Т	G	М	k	h	da
Factor	10 ²⁴	10 ²¹	10 ¹⁸	10 ¹⁵	10 ¹²	10 ⁹	10 ⁶	10 ³	10 ²	10 ¹
Nombre	deci	centi	milli	micro	nano	pico	femto	atto	zepto	yocto
Símbolo	d	С	m	μ	n	р	f	а	Z	У
Factor	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²	10 ⁻¹⁵	10 ⁻¹⁸	10 ⁻²¹	10 ⁻²⁴

Algunas definiciones:

- * Longitud: (metro m): Longitud del trayecto recorrido en el vacío por la luz, durante un intervalo de tiempo de 1/299 792 458 segundos. (17ª CGPM de 1983)
- * Tiempo: (segundo s): Duración de 9 192 631 770 períodos de la radicación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del átomo de cesio 133. (13ª CGPM 1967, resolucion 1)

 Ing. Édgar Jiménez · Universidad de Ibaqué

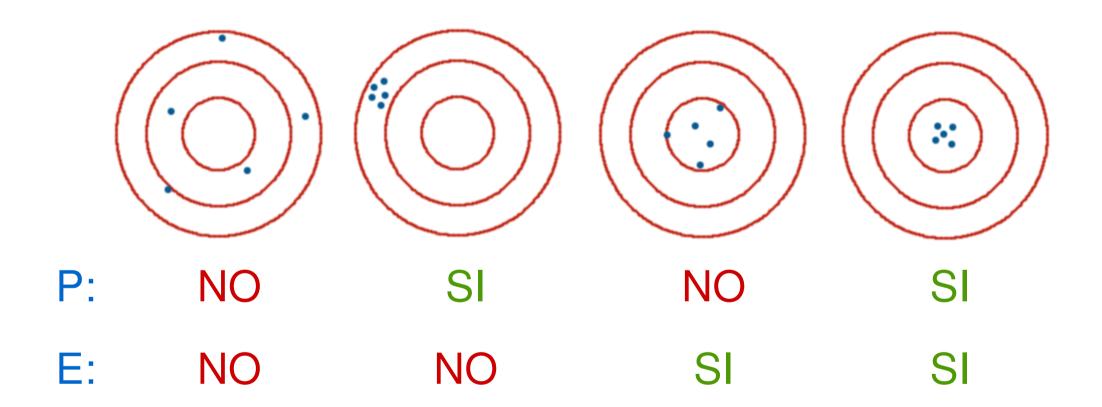
Algunas reglas para la escritura en el SI:

- * No se colocarán puntos luego de los símbolos, sus múltiplos o submúltiplos. Cuando, por norma, deba ir un signo ortográfico después del símbolo de la unidad, debe aparecer un espacio entre ellos. [kg, m, cm]
- * El símbolo de la unidad será el mismo para el singular que para el plural. [un metro = 1 m, mil doscientos treinta metros = 1230 m]

Algunas reglas para la escritura en el SI:

- * El nombre completo de las unidades SI se escribe en minúsculas, con la única excepción del grado Celsius, salvo en el caso de comenzar la frase o luego de un punto. [metro, Metro, newton, Newton]
- * No existen más símbolos aparte de los reconocidos internacionalmente. [m , mt, mts, M; s , seg; km/h , kph]
- * El separador decimal es la coma y no el punto. [10 234,9 10234.9]

Algunas reglas para la escritura en el SI:


- * En números de muchas cifras, éstas se agrupan de tres en tres, a partir de la coma, tanto para la parte entera como para la parte decimal. Entre cada grupo se debe dejar un espacio:
 - * La velocidad de la luz en el vacío es 299 792 458 m/s
 - * Una pulgada equivale a 0,025 4 m
- * Debe existir un espacio entre el número y el símbolo.

Lectura adicional

Sistema Internacional de Unidades (SI). Superintendencia de Industria y Comercio. República de Colombia. http://www.sic.gov.co/Estudios/Siu.php

Precisión y Exactitud

P: Precisión - E: Exactitud

Errores

"Ninguna medición es exacta y nunca se conoce el valor verdadero de la cantidad que se está midiendo (los valores exactos o verdaderos existen, pero no pueden determinarse)."

- ⇒ Toda medición tiene un error.
- ⇒ La magnitud exacta del error tampoco se puede conocer.

Errores

- * Equivocación: Diferencia con respecto al valor verdadero, causada por la falta de atención del topógrafo. Por ejemplo, anotar 276,93 m en lugar de 267,93 m . Las equivocaciones se pueden eliminar si se trabaja con cuidado y se revisa el trabajo hecho.
- * Error: Diferencia con respecto al valor verdadero, ocasionada por la imperfección de los sentidos de una persona, por la imperfección de los instrumentos o por efectos climáticos.

Errores

Fuentes de error:

- * Errores personales: de percepción (diferentes y más pequeños que las equivocaciones).
- * Errores instrumentales: de fabricación y falta de calibración.
- * Errores naturales: Producidos por el viento, temperatura u otro fenómeno natural.

Tipos de errores

- * Error sistemático: Es aquel que, en igualdad de condiciones, se repite siempre en la misma cantidad y con el mismo signo. Este tipo de error tiende a acumularse en función del número de medidas que se tomen. Todo error sistemático obedece siempre a una ley matemática o física, por lo tanto, puede determinarse su magnitud y aplicarse la corrección correspondiente.
 - * Que una cinta métrica mida más o menos de lo que dice es un error sistemático.

Tipos de errores

* Error accidental o aleatorio: Es aquel producido por factores que no pueden ser controlados por el observador. No puede aplicarse ninguna corrección en este caso, pues la magnitud y el signo del error en cada observación son casuales (aleatorios); sin embargo obedecen a la ley de probabilidades y, en ocasiones, tienden a compensarse en observaciones sucesivas.

El valor más probable

http://doblevia.wordpress.com

Bibliografía

Una buena parte de estos apuntes de clase tienen aportes textuales de los siguientes libros:

- * McCormac, Jack. Topografía. Limusa Wiley. 2005
- * Paul R. Wolf y Russell C. Brinker. Topografía, 9ª ed. Alfaomega. 2000
- * Torres Nieto Álvaro y Villate Bonilla Eduardo. Topografía, 4ª ed. Escuela Colombiana de Ingeniería, Pearson Educación de Colombia. 2001

Notas de derechos

Los iconos y la paleta de colores utilizados en esta presentaci{on hacen parte del Tango Desktop Project y están disponibles bajo licencia Creative Commons Attribution Share-Alike. Para más información, o para obtener los iconos, revise la página http://tango-project-org

Las imágenes y diagramas utilizados en esta presentación señalan su correspondiente fuente y están acompañadas de un icono que indica los derechos que se reserva el autor, mediante alguna de las siguientes licencias:

GNU Free Documentation License:

http://en.wikipedia.org/wiki/Wikipedia:Text of the GNU Free Documentation License

Dominio Público:

http://es.wikipedia.org/wiki/Dominio_p%C3%BAblico

Creative Commons:

http://creativecommons.org

Material con todos los derechos reservados, pero concedidos:

Ver fuente en donde aparezca el material.

Las imágenes o diagramas que no señalen su fuente son hechas por el autor de esta presentación y son liberadas bajo la misma licencia de este trabajo.

Ing. Édgar Jiménez · Universidad de Ibagué

Licencia

El presente trabajo está disponible según los términos de la licencia Creative-Commons Reconocimiento-CompartirIgual 2.5 o, a su escogencia, alguna versión posterior.

Usted es libre de:

- copiar, distribuir y comunicar públicamente la obra
- hacer obras derivadas

Bajo las condiciones siguientes:

- Reconocimiento. Debe reconocer los créditos de la obra de la manera especificada por el autor o el licenciador.
 - Compartir bajo la misma licencia. Si altera o transforma esta obra, o genera una obra derivada, sólo puede distribuir la obra generada bajo una licencia idéntica a ésta.
- * Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra.
- Alguna de estas condiciones puede no aplicarse si se obtiene el permiso del titular de los derechos de autor

.....

This work is licensed under the Creative Commons Attribution-Share Alike 2.5 Colombia License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.5/co/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.